Science and technology policy and research have largely been the domains of government since 1947 and are largely patterned after the structure left behind by the British. Within the central government, there are a top-down apparatus and a plethora of ministries, departments, lower-level agencies, and institutions involved in the science and technology infrastructure. Government-administered science and technology emanate from the Office of the Prime Minister, to which a chief science adviser and the Science Advisory Council, when they are appointed, have direct input. The prime minister de jure controls the science and technology sector through the National Council on Science and Technology, the minister of state for science and technology (who has control over day-to-day operations of the science and technology infrastructure), and ministers responsible for ocean development, atomic energy, electronics, and space. Other ministries and departments also have significant science and technology components and answer to the prime minister through their respective ministers. Among them are agriculture, chemicals and fertilizers, civil aviation and tourism, coal, defence, environment, food, civil supplies, forests and wildlife, health and family welfare, home affairs, human resource development, nonconventional energy sources, petrochemicals, and petroleum and natural gas, as well as other governmental entities. The Ministry of Science and Technology was established in 1971 to formulate science and technology policies and implement, identify, and promote "frontline" research throughout the science and technology infrastructure. The ministry, through its subordinate Department of Science and Technology, also coordinates intragovernmental and international cooperation and provides funding for domestic institutions and research programs. The Department of Scientific and Industrial Research, a technology transfer organization, and the Department of Biotechnology, which runs a number of developmental laboratories, are the ministry's other administrative elements. Indicative of the level of importance placed on science and technology is the fact that Prime Minister P.V. Narasimha Rao held the portfolio for this ministry in the early and mid-1990s. Some argued, however, that Rao could truly strengthen the sector by appointing, as his predecessors did, a chief science adviser and a committee of leading scientists to provide high-level advice and delegate the running of these ministries to others. The National Council on Science and Technology is at the apex of the science and technology infrastructure and is chaired by the prime minister. The integration of science and technology planning with national socioeconomic planning is carried out by the Planning Commission (see Development Planning, this ch.). Scientific advisory committees in individual socioeconomic ministries formulate long-term programs and identify applicable technologies for their particular area of responsibility. The rest of the infrastructure has seven major components. The national-level compo 2000
onent includes government organizations that provide ÍÍÍÍÍÍÍÍhands-on research and development, such as the ministries of atomic energy and space, the Council of Scientific and Industrial Research (CSIR--a component of the Ministry of Science and Technology), and the Indian Council of Agricultural Research. The second component, organizations that support research and development, includes the departments or ministries of biotechnology, nonconventional energy sources, ocean development, and science and technology. The third-echelon component includes state government research and development agencies, which are usually involved with agriculture, animal husbandry, irrigation, public health, and the like and that also are part of the national infrastructure. The four other major components are the university system, private research organizations, public-sector research and development establishments, and research and development centers within private industries. Almost all internationally recognized university-level research is carried out in government-controlled or government-supported institutions. The results of government-sponsored research are transferred to public- and private-sector industries through the National Research and Development Corporation. This corporation is part of the Ministry of Science and Technology and has as its purpose the commercialization of scientific and technical know-how, the promotion of research through grants and loans, promotion of government and industry joint projects, and the export of Indian technology. Resource Allocation Central government financial support of research and development--including subsidies to public-sector industries--was 75.7 percent of total financial support in FY 1992. State governments provided an additional 9.3 percent. However, even when combined with the private-sector contribution (15.0 percent), research and development expenditures were only just over 0.8 percent of the GDP in FY 1992. Although there was growth in research and development expenditures during the 1980s and early 1990s, the rate of growth was less than the GNP rate of growth during the same period and was a cause of concern for government planners. Moreover, the bulk of government research and development expenditures (80 percent in FY 1992) goes to only five agencies: the Defence Research and Development Organisation (DRDO), the Ministry of Space, the Indian Council of Agricultural Research, the Ministry of Atomic Energy, and CSIR, and to their constituent organizations. Despite long-term government commitment to research and development, India compares poorly with other major Asian countries. In Japan, for example, nearly 3 percent of GDP goes to research and development in South Korea and Taiwan, the figure is nearly 2 percent. In India, research and development receives only 0.8 percent of GDP only China among the major players spends less (0.7 percent). However, India's share of GDP expenditure on research and development has increased slightly: in 1975 it stood at 0.5 percent, in 1980 at 0.6 percent, and in 1985 at 0.8, where it has become static. Because of the allocation of financial inputs, India has been more successful at promoting security-oriented and large-scale scientific endeavors, such as space and nuclear science programs, than at promoting industrial technology. Part of the latter lack of achievement has been attributed to the limited role of universities in the research and development system. Instead, India has concentrated on government-sponsored specialized institutes and provided minimal funding to university research programs. The low funding level has encouraged university scientists to find jobs in the more liberally funded public-sector national laboratories. Moreover, private industry in India plays a relatively minor role in the science and technology system (15 percent of the total investment compared with Japan's 80 percent and slightly more than 50 percent in the United States). This low level of private-sector investment has been attributed to a number of factors, including the preponderance of trade-oriented rather than technology-oriented industries, protectionist tariffs, and rigid regulation of foreign investment. The largest private-sector research and development expenditures during the FY 1990-FY 1992 period were in the areas of engineering and technology, particularly in the industrial development, transportation, communications, and health services sectors. Nonetheless, they were relatively small expenditures when compared with government and public-sector inputs in the same fields. The key element for Indian industry to benefit from the greater government and public-sector efforts in the 1990s is the ability of the government and public-sector laboratories to develop technologies with broad applications and to transfer these technologies--as is done by the National Research and Development Corporation--to private-sector industries able to apply them with maximum efficiency. India ranks eleventh in the world in its number of active scientific and technical personnel. Including medical personnel, they were estimated at around 188,000 in 1950, 450,000 in 1960, 1.2 million in 1970, 1.8 million in 1980, and 3.8 million in 1990. India's universities, university-level institutions, and colleges have produced more than 200,000 science and technology graduates per year since 1985. Doctorates are awarded each year to about 3,000 people in science, between 500 and 600 in engineering, around 800 in agricultural sciences, and close to 6,000 in medicine. However, in 1990 India had the lowest number of scientific and engineering personnel (3.3) per 10,000 persons in the national labor force of the major Asian nations. For example, Japan, had nearly seventy-five per 10,000, South Korea had more than thirty-seven per 10,000, and China had 5.6 per 10,000. The quality of higher education in the sciences has not improved as quickly as desired since independence because of the flight of many top scientists from academia to higher-paying jobs in government-funded research laboratories. Foreign aid, aimed at counteracting university faculty shortages, has produced top-rate graduates as intended. However, because of limited job prospects at home, many of the brightest physicians, scientists, and engineers have been attracted by opportunities abroad, particularly in Western nations. Since the early 1990s, this trend has appeared to be changing as more high-technology jobs, especially in fields requiring computer science skills, have begun to open in India as a result of economic liberalization. The "brain bank" network of Indian scientists abroad that was seen as a potential source of talent by some observers in the 1980s has proven to be a valuable resource in the 1990s. Using imported technology, scientists made major advances in microprocessors during the 1980s that brought the country to only one generation (three to four years) behind international leaders. A sign of how much microcomputer use has developed could be seen in sales: from US$93 million in FY 1983 to US$488 million in FY 1988. Facilitating the use of automation has been a counterpart to the expansion of the data communication field. The development of the "Param 9000" supercomputer prototype, reportedly capable of billions of floating point operations per second, was completed in December 1994 and was announced by the state-owned Centre for Development of Advanced Computing as ready for sale to operational users in March 1995. Earlier Param models, using parallel processing technologies to achieve near-supercomputer performance, were produced in sufficient quantity for export in the early 1990s. DRDO developed its own parallel processing computer, which was unveiled by Prime Minister Rao in April 1995. Developed by DRDO's Advanced Numerical Research and Analysis Group in Hyderabad, the supercomputer is capable of 1 billion points per second speed and can be used for geophysics, image processing, and molecular modeling. Data as of September 1995 <
p> |